

No. 6, Hejiang Road, Jhongli City, Taoyuan County, TAIWAN Tel: +886-3-452-5188 Fax: +886-3-462-9588 www.luxnetcorp.com

1310 nm 622 Mbps 5pin ROSA

DI7P-9160-x Series

TYPE NAME: DI7P-9160-7

Product Description:

The LuxNet DI7P-9160-x ROSA (Receiver Optical Sub-Assembly) is designed for a high-speed, high-performance data communication and telecommunication applications. This device integrates our high-speed 1310 nm PIN detector with a 622Mbps trans-impedance amplifier (TIA) and capacitors with a TO-56 header with flat-window cap and optical port. The product is designed for OC-12 optical communication systems. The port has a fiber connector which transmits light through a receptacle into the PIN detector with high coupling efficiency.

Product Specifications:

Absolute Maximum Ratings (T = 25°C):

Parameter	Symbol	Unit	Min.	Max.	Note
Operating Temperature	Top	°C	-40	85	
Storage Temperature	T _{stg}	°C	-40	100	
Solder Reflow Temperature	T _{stg}	°C		260	10 seconds max.
Power Supply Voltage	Vp	V	-0.5	6.0	
Optical Power	Pin	dBm	0.811.00	5	

Electro-Optical Characteristics (T = 25°C, unless noted otherwise):

Parameter	Symbol	Unit	Min.	Typ.	Max.:	Test Condition
Supply Voltage	Voc	Volts	2.9	3.3	3.6	THE STATE OF THE PARTY OF THE P
Supply Current	Icc	mA		18	23	$V_{cc}=3.3V, R_L=50\Omega$
Output Voltage (differential)	Vout	mV		125		$P_{in} = 100 \mu W, R_{L} = 50\Omega$
Responsivity	R	KV/W		14.9		λ =1310nm V_{cc} =3.3V, P_{in} = 7.5 μ W, R_L = 50 Ω
Sensitivity	S	dBm		-32	-30	λ=1310nm 2 ²³ - 1 PRBS, BER= 10 ⁻¹⁰
Upper -3dB Bandwidth	BW	MHz	450	650	I	$V_{cc}=3.3V, RL = 50\Omega$
Peak Wavelength	λ_p	nm	1100	1310	1650	
Rise/Fall Time	τ_r/τ_f	ps		350/350		V _{cc} =3.3V, (20%-80%)
Overload		dBm	-3			221

^{*} Specifications are subject to change without notice.

^{*} Screening per customer-specified reject limits is available.

No. 6, Hejiang Road, Jhongli City, Taoyuan County, TAIWAN Tel: +886-3-452-5188 Fax: +886-3-462-9588 www.luxnetcorp.com

DI7P-9160-7

Dimensions: (mm)
All dimensions are nominal

PINOUT

D17P-9160-7					
Number	Function				
1	GND				
2	Inverted Output (D*)				
3	Vcc				
4	Non-inverted Output (D)				

^{*} Specifications are subject to change without notice.